
Summary of JavaScript Basics
Notes by Taslim Ansari

1. Introduction to JavaScript
JavaScript is a high-level interpreted programming language commonly
used for web development.

Enables dynamic and interactive website features such as animations, form
validation, and real-time updates.

Also utilized for server-side programming and mobile app development.

Difference between interpreted (JavaScript) and compiled languages (like
C++, Rust): interpreted languages execute code line-by-line, whereas
compiled languages are converted into machine code beforehand.

High-level languages offer human-readable syntax and abstract away
hardware complexities.

2. Setting Up the Environment
Uses Google Chrome Developer Tools Console to write and test JavaScript
code.

Instructions on opening and navigating the console are provided.

Variables and Data Types

Variable Declaration
Three main keywords: var , let , and const .

var : Function-scoped, older style.

let : Block-scoped, variable can be reassigned.

const : Block-scoped, value cannot be reassigned.

Example:

var name = "John Doe";
let age = 30;

Summary of JavaScript Basics 1

const country = "USA";

Data Types
Primitive Types:

number : integers, floating points, negatives.

string : sequences of characters, enclosed in single or double quotes.

boolean : true or false .

null : explicitly set empty value.

undefined : variable declared but not assigned.

Important distinctions:

null !== undefined (not strictly equal).

Type coercion can lead to implicit conversions and unexpected results.

Type Coercion and Comparison
JavaScript tries to be "nice" by converting types implicitly during
operations (e.g., adding 1 + "2" results in "12" string).

Two equality operators:

== (loose equality, allows coercion).

=== (strict equality, checks type and value).

Use strict equality (===) to avoid bugs from type coercion.

Numeric Precision
Floating point arithmetic can produce imprecise results (e.g., 0.1 + 0.2 !== 0.3).

The .toFixed() method can help manage precision by formatting numbers.

Functions
Defined using the function keyword or as Arrow functions (shorthand
syntax).

Functions can accept parameters and return values.

Functions are first-class citizens in JavaScript:

Summary of JavaScript Basics 2

Can be assigned to variables.

Passed as arguments.

Returned from other functions.

Example of function assignment:

const sum = function(a, b) { return a + b; };
let x = sum;
x(5, 4); // returns 9

Arrow function example:

const square = x => x * x;

Arrays and Array Methods

Arrays
Ordered collections indexed from zero.

Elements accessed or modified using square bracket syntax.

Example:

let letters = ['a', 'b', 'c', 'd', 'e'];

Manipulating Arrays

Method Purpose Returns

pop() Removes last element The removed element

push(element) Adds element to end New length of the array

shift() Removes first element The removed element

unshift(element) Adds element to beginning New length of the array

Arrays can contain mixed data types, including numbers and strings.

Spread Operator
Syntax: ...array

Summary of JavaScript Basics 3

Used to create new arrays by expanding existing arrays, avoiding nested
arrays.

Example:

let newArr = ['a', ...letters, 5];

Array Iteration Methods
filter(predicate) returns a new array of elements that satisfy the predicate
function.

map(callback) creates a new array with each element transformed by the
callback.

reduce(callback, initialValue) reduces the array to a single value by cumulatively
applying the callback.

Example for filtering even numbers:

const evenNumbers = numbers.filter(x => x % 2 === 0);

Example for mapping to double values:

const doubled = numbers.map(x => x * 2);

Example for reducing to sum:

const total = ages.reduce((acc, x) => acc + x, 0);

Objects and Object Methods

Object Basics
Collections of key-value pairs.

Keys (property names) are strings; values can be any data type.

Access properties via dot notation or brackets:

person.name;

Summary of JavaScript Basics 4

person['age'];

Properties can be added or deleted dynamically.

Example object:

let person = { name: "John Doe", age: 30, country: "USA" };

Methods
Object properties that are functions are called methods.

Methods can use the special this keyword to refer to the object itself.

Example:

person.welcome = function() {
 console.log("Hello " + this.name);
};
person.welcome(); // "Hello John Doe"

Useful Object Methods

Method Description Returns

Object.keys(obj) Returns an array of all property names Array of strings

Object.values(obj) Returns an array of all property values Array of values

These methods enable iterating over object properties using loops.

Control Structures

Conditional Statements
if , else if , else control execution based on conditions.

Example:

if(score >= 80) {
 console.log("Great");
} else if(score >= 60) {
 console.log("Good enough");

Summary of JavaScript Basics 5

} else {
 console.log("Failed");
}

Loops: For Loop
Used to iterate a fixed number of times, commonly over arrays.

Syntax includes initialization, condition, and increment.

Example iterating array elements:

for(let i = 0; i < letters.length; i++) {
 console.log(letters[i]);
}

Variable Scope

Keyword Scope Type Scope Description

var Function scope Variable accessible anywhere inside the function it
is declared in

let Block scope Variable accessible only within the nearest
enclosing block

const Block scope Same as let but value cannot be reassigned

Block: any code enclosed in {} such as if statements, loops.

Function scope means variables are accessible throughout the entire
function.

Block scope means variables exist only inside blocks.

Key Insights
JavaScript is versatile, used for front-end, back-end, and mobile
development.

Understanding variable declarations and scope is fundamental to avoid
bugs.

Type coercion can cause subtle bugs; prefer strict equality (===).

Summary of JavaScript Basics 6

Functions are first-class citizens, enabling functional programming
patterns.

Arrays and objects in JavaScript are objects with methods and
properties, allowing rich data manipulation.

Higher-order functions like filter , map , and reduce simplify array
processing.

Arrow functions provide concise syntax, beneficial for callbacks and
functional methods.

Use of this in methods allows objects to encapsulate behavior and data.

Control structures and loops control program flow effectively.

Spread operator facilitates immutable array manipulation.

Quantitative Data: Variable Scope and Behavior

Variable Type Scope Can Reassign? Example Behavior Summary

var Function Yes Accessible throughout function,
same variable in nested blocks

let Block Yes
Accessible only within block,
different variables in different
blocks

const Block No Same as let but value cannot be
changed

Hoisting
Hoisting is JavaScript’s behavior of moving declarations (not initializations)
to the top of their scope during execution.

Affects variables declared with var , let , const , and function declarations.

Hoisting with var
Variables declared with var are hoisted and initialized with undefined .

Example:

console.log(a); // undefined

Summary of JavaScript Basics 7

var a = 10;

Hoisting with let and const
let and const are hoisted but not initialized.

They exist in the Temporal Dead Zone (TDZ) until the declaration line is
executed.

Accessing them before declaration throws an error.

Example:

console.log(b); // ReferenceError
let b = 20;

Hoisting with Functions
Function declarations are fully hoisted and can be called before their
definition.

Example:

sayHello();

function sayHello() {
 console.log("Hello");
}

Truthy and Falsy Values
JavaScript evaluates values as truthy or falsy when used in conditions.

Falsy values are treated as false in conditional statements.

Falsy Values in JavaScript
false

0

"" (empty string)

Summary of JavaScript Basics 8

null

undefined

NaN

All other values are considered truthy.

Example:

if (" ") {
 console.log("This runs"); // truthy
}

Array Iteration: forEach vs map vs filter

Method Returns New
Array

Use Case

forEach() No Perform side effects like logging or updating
values

map() Yes Transform each element in an array

filter() Yes Select elements based on a condition

Example:

numbers.forEach(x => console.log(x));
const squared = numbers.map(x => x * x);
const positives = numbers.filter(x => x > 0);

for...of and for...in Loops

for...of Loop
Used to iterate over iterable objects such as arrays.

Accesses values directly.

Example:

for (let letter of letters) {
 console.log(letter);

Summary of JavaScript Basics 9

}

for...in Loop
Used to iterate over object properties (keys).

Accesses property names.

Example:

for (let key in person) {
 console.log(key, person[key]);
}

Asynchronous JavaScript
JavaScript is single-threaded, meaning it executes one task at a time.

Asynchronous programming allows long-running tasks (like API calls) to run
without blocking the main thread.

Promises
A Promise represents a value that may be available now, later, or never.

Has three states: pending , fulfilled , rejected .

Example:

fetch(url)
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.log(error));

async / await
async makes a function return a Promise.

await pauses execution until the Promise resolves.

Provides cleaner, more readable asynchronous code.

Example:

Summary of JavaScript Basics 10

async function getData() {
 try {
 const response = await fetch(url);
 const data = await response.json();
 console.log(data);
 } catch (error) {
 console.log(error);
 }
}

Error Handling
JavaScript uses try...catch blocks to handle runtime errors gracefully.

Prevents the program from crashing due to unexpected errors.

Example:

try {
 let data = JSON.parse("{invalid}");
} catch (error) {
 console.log("Error occurred");
}

JSON (JavaScript Object Notation)
JSON is a lightweight data format used for data exchange between client
and server.

Commonly used in APIs.

JSON Methods

Method Purpose

JSON.stringify() Converts JavaScript object to JSON string

JSON.parse() Converts JSON string to JavaScript object

Example:

Summary of JavaScript Basics 11

const jsonString = JSON.stringify(person);
const obj = JSON.parse(jsonString);

Primitive vs Reference Types

Primitive Types
Stored by value.

Changes do not affect other variables.

Example:

let a = 10;
let b = a;
b = 20; // a remains 10

Reference Types
Stored by reference.

Changes affect all references to the object.

Example:

let obj1 = { x: 1 };
let obj2 = obj1;
obj2.x = 5; // obj1.x also becomes 5

Key Takeaways (Additional)
Hoisting behavior differs between var and let/const and can cause runtime
errors.

Truthy/falsy evaluation simplifies conditional logic but must be used
carefully.

forEach does not return a new array, unlike map and filter .

Async/await improves readability over chained .then() calls.

Summary of JavaScript Basics 12

Error handling is essential for stable applications.

JSON is the standard data format for APIs.

Understanding reference vs value types prevents unintended mutations.

Summary of JavaScript Basics 13

